Ranking Instances by Maximizing the Area under ROC Curve

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Score Fusion by Maximizing the Area under the ROC Curve

Information fusion is currently a very active research topic aimed at improving the performance of biometric systems. This paper proposes a novel method for optimizing the parameters of a score fusion model based on maximizing an index related to the Area Under the ROC Curve. This approach has the convenience that the fusion parameters are learned without having to specify the client and impost...

متن کامل

Risk Estimation by Maximizing the Area under ROC Curve

Risks exist in many different domains; medical diagnoses, financial markets, fraud detection and insurance policies are some examples. Various risk measures and risk estimation systems have hitherto been proposed and this paper suggests a new risk estimation method. Risk estimation by maximizing the area under a receiver operating characteristics (ROC) curve (REMARC) defines risk estimation as ...

متن کامل

Learning Classification Systems Maximizing the Area under the Roc Curve

Permission is herewith granted to Università degli Studi di Cassino to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions. Acknowledgements This work would not have been possible without the support I received from many people. A big thank you to all who have helped me in some way or other to complete this...

متن کامل

Optimizing Area Under the ROC Curve using Ranking SVMs

Area Under the ROC Curve (AUC), often used for comparing classifiers, is a widely accepted performance measure for ranking instances. Many researches have studied optimization of AUC, usually via optimizing some approximation of a ranking function. Ranking SVMs are among the better performers but their usage in the literature is typically limited to learning a total ranking from partial ranking...

متن کامل

Learning Mixtures of Localized Rules by Maximizing the Area Under the ROC Curve

We introduce a model class for statistical learning which is based on mixtures of propositional rules. In our mixture model, the weight of a rule is not uniform over the entire instance space. Rather, it depends on the instance at hand. This is motivated by applications in molecular biology, where it is frequently observed that the effect of a particular mutational pattern depends on the geneti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering

سال: 2013

ISSN: 1041-4347

DOI: 10.1109/tkde.2012.214